Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Cardiology

  • 370 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 36
  • 37
  • Next →
Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload
Karl Toischer, … , Loren J. Field, Gerd Hasenfuss
Karl Toischer, … , Loren J. Field, Gerd Hasenfuss
Published October 30, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI81870.
View: Text | PDF

Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload

  • Text
  • PDF
Abstract

Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2–expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2–expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2–expressing mice. The preserved function and improved survival in cyclin D2–expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin–dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2–induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.

Authors

Karl Toischer, Wuqiang Zhu, Mark Hünlich, Belal A. Mohamed, Sara Khadjeh, Sean P. Reuter, Katrin Schäfer, Deepak Ramanujam, Stefan Engelhardt, Loren J. Field, Gerd Hasenfuss

×

Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes
John F. O’Sullivan, … , Kathleen E. Corey, Robert E. Gerszten
John F. O’Sullivan, … , Kathleen E. Corey, Robert E. Gerszten
Published October 30, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI95995.
View: Text | PDF

Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes

  • Text
  • PDF
Abstract

Unbiased, “nontargeted” metabolite profiling techniques hold considerable promise for biomarker and pathway discovery, in spite of the lack of successful applications to human disease. By integrating nontargeted metabolomics, genetics, and detailed human phenotyping, we identified dimethylguanidino valeric acid (DMGV) as an independent biomarker of CT-defined nonalcoholic fatty liver disease (NAFLD) in the offspring cohort of the Framingham Heart Study (FHS) participants. We verified the relationship between DMGV and early hepatic pathology. Specifically, plasma DMGV levels were correlated with biopsy-proven nonalcoholic steatohepatitis (NASH) in a hospital cohort of individuals undergoing gastric bypass surgery, and DMGV levels fell in parallel with improvements in post-procedure cardiometabolic parameters. Further, baseline DMGV levels independently predicted future diabetes up to 12 years before disease onset in 3 distinct human cohorts. Finally, we provide all metabolite peak data consisting of known and unidentified peaks, genetics, and key metabolic parameters as a publicly available resource for investigations in cardiometabolic diseases.

Authors

John F. O’Sullivan, Jordan E. Morningstar, Qiong Yang, Baohui Zheng, Yan Gao, Sarah Jeanfavre, Justin Scott, Celine Fernandez, Hui Zheng, Sean O’Connor, Paul Cohen, Ramachandran S. Vasan, Michelle T. Long, James G. Wilson, Olle Melander, Thomas J. Wang, Caroline Fox, Randall T. Peterson, Clary B. Clish, Kathleen E. Corey, Robert E. Gerszten

×

CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis
Amanda C. Doran, … , Alan R. Tall, Ira Tabas
Amanda C. Doran, … , Alan R. Tall, Ira Tabas
Published October 3, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94735.
View: Text | PDF

CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis

  • Text
  • PDF
Abstract

Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. Western diet–fed LDL receptor–deficient (Ldlr–/–) mice with myeloid-specific deletion of CaMKII had smaller necrotic cores with concomitantly thicker collagen caps. These lesions demonstrated evidence of enhanced efferocytosis, which was associated with increased expression of the macrophage efferocytosis receptor MerTK. Mechanistic studies revealed that CaMKIIγ-deficient macrophages and atherosclerotic lesions lacking myeloid CaMKIIγ had increased expression of the transcription factor ATF6. We determined that ATF6 induces liver X receptor-α (LXRα), an Mertk-inducing transcription factor, and that increased MerTK expression and efferocytosis in CaMKIIγ-deficient macrophages is dependent on LXRα. These findings identify a macrophage CaMKIIγ/ATF6/LXRα/MerTK pathway as a key factor in the development of necrotic atherosclerotic plaques.

Authors

Amanda C. Doran, Lale Ozcan, Bishuang Cai, Ze Zheng, Gabrielle Fredman, Christina C. Rymond, Bernhard Dorweiler, Judith C. Sluimer, Joanne Hsieh, George Kuriakose, Alan R. Tall, Ira Tabas

×

Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis
Hadi Khalil, … , Jason Karch, Jeffery D. Molkentin
Hadi Khalil, … , Jason Karch, Jeffery D. Molkentin
Published September 11, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94753.
View: Text | PDF

Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis

  • Text
  • PDF
Abstract

The master cytokine TGF-β mediates tissue fibrosis associated with inflammation and tissue injury. TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-β signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-β–Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload–induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-β receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload–induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-β mutant transgene. Interestingly, cardiac fibroblast–specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-β–Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.

Authors

Hadi Khalil, Onur Kanisicak, Vikram Prasad, Robert N. Correll, Xing Fu, Tobias Schips, Ronald J. Vagnozzi, Ruijie Liu, Thanh Huynh, Se-Jin Lee, Jason Karch, Jeffery D. Molkentin

×

Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy
Xi Fang, … , Sylvia M. Evans, Ju Chen
Xi Fang, … , Sylvia M. Evans, Ju Chen
Published July 24, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94310.
View: Text | PDF

Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy

  • Text
  • PDF
Abstract

Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2–associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

Authors

Xi Fang, Julius Bogomolovas, Tongbin Wu, Wei Zhang, Canzhao Liu, Jennifer Veevers, Matthew J. Stroud, Zhiyuan Zhang, Xiaolong Ma, Yongxin Mu, Dieu-Hung Lao, Nancy D. Dalton, Yusu Gu, Celine Wang, Michael Wang, Yan Liang, Stephan Lange, Kunfu Ouyang, Kirk L. Peterson, Sylvia M. Evans, Ju Chen

×

Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression
Karishma Rahman, … , P’ng Loke, Edward A. Fisher
Karishma Rahman, … , P’ng Loke, Edward A. Fisher
Published June 26, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI75005.
View: Text | PDF

Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression

  • Text
  • PDF
Abstract

Atherosclerosis is a chronic inflammatory disease, and developing therapies to promote its regression is an important clinical goal. We previously established that atherosclerosis regression is characterized by an overall decrease in plaque macrophages and enrichment in markers of alternatively activated M2 macrophages. We have now investigated the origin and functional requirement for M2 macrophages in regression in normolipidemic mice that received transplants of atherosclerotic aortic segments. We compared plaque regression in WT normolipidemic recipients and those deficient in chemokine receptors necessary to recruit inflammatory Ly6Chi (Ccr2–/– or Cx3cr1–/–) or patrolling Ly6Clo (Ccr5–/–) monocytes. Atherosclerotic plaques transplanted into WT or Ccr5–/– recipients showed reduced macrophage content and increased M2 markers consistent with plaque regression, whereas plaques transplanted into Ccr2–/– or Cx3cr1–/– recipients lacked this regression signature. The requirement of recipient Ly6Chi monocyte recruitment was confirmed in cell trafficking studies. Fate-mapping and single-cell RNA sequencing studies also showed that M2-like macrophages were derived from newly recruited monocytes. Furthermore, we used recipient mice deficient in STAT6 to demonstrate a requirement for this critical component of M2 polarization in atherosclerosis regression. Collectively, these results suggest that continued recruitment of Ly6Chi inflammatory monocytes and their STAT6-dependent polarization to the M2 state are required for resolution of atherosclerotic inflammation and plaque regression.

Authors

Karishma Rahman, Yuliya Vengrenyuk, Stephen A. Ramsey, Noemi Rotllan Vila, Natasha M. Girgis, Jianhua Liu, Viktoria Gusarova, Jesper Gromada, Ada Weinstock, Kathryn J. Moore, P’ng Loke, Edward A. Fisher

×

Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice
Xuejun Yuan, … , Yonggang Zhou, Thomas Braun
Xuejun Yuan, … , Yonggang Zhou, Thomas Braun
Published April 24, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI88725.
View: Text | PDF

Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice

  • Text
  • PDF
Abstract

Congenital heart disease (CHD) represents the most prevalent inborn anomaly. Only a minority of CHD cases are attributed to genetic causes, suggesting a major role of environmental factors. Nonphysiological hypoxia during early pregnancy induces CHD, but the underlying reasons are unknown. Here, we have demonstrated that cells in the mouse heart tube are hypoxic, while cardiac progenitor cells (CPCs) expressing islet 1 (ISL1) in the secondary heart field (SHF) are normoxic. In ISL1+ CPCs, induction of hypoxic responses caused CHD by repressing Isl1 and activating NK2 homeobox 5 (Nkx2.5), resulting in decreased cell proliferation and enhanced cardiomyocyte specification. We found that HIF1α formed a complex with the Notch effector hes family bHLH transcription factor 1 (HES1) and the protein deacetylase sirtuin 1 (SIRT1) at the Isl1 gene. This complex repressed Isl1 in the hypoxic heart tube or following induction of ectopic hypoxic responses. Subsequently, reduced Isl1 expression abrogated ISL1-dependent recruitment of histone deacetylases HDAC1/5, inhibiting Nkx2.5 expression. Inactivation of Sirt1 in ISL1+ CPCs blocked Isl1 suppression via the HIF1α/HES1/SIRT1 complex and prevented CHDs induced by pathological hypoxia. Our results indicate that spatial differences in oxygenation of the developing heart serve as signals to control CPC expansion and cardiac morphogenesis. We propose that physiological hypoxia coordinates homeostasis of CPCs, providing mechanistic explanations for some nongenetic causes of CHD.

Authors

Xuejun Yuan, Hui Qi, Xiang Li, Fan Wu, Jian Fang, Eva Bober, Gergana Dobreva, Yonggang Zhou, Thomas Braun

×

Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function
Philipp S. Wild, … , Ramachandran S. Vasan, Marcus Dörr
Philipp S. Wild, … , Ramachandran S. Vasan, Marcus Dörr
Published April 10, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI84840.
View: Text | PDF

Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

  • Text
  • PDF
Abstract

BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function.

METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function.

RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue.

CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies.

FUNDING. For detailed information per study, see Acknowledgments.

Authors

Philipp S. Wild, Janine F. Felix, Arne Schillert, Alexander Teumer, Ming-Huei Chen, Maarten J.G. Leening, Uwe Völker, Vera Großmann, Jennifer A. Brody, Marguerite R. Irvin, Sanjiv J. Shah, Setia Pramana, Wolfgang Lieb, Reinhold Schmidt, Alice V. Stanton, Dörthe Malzahn, Albert Vernon Smith, Johan Sundström, Cosetta Minelli, Daniela Ruggiero, Leo-Pekka Lyytikäinen, Daniel Tiller, J. Gustav Smith, Claire Monnereau, Marco R. Di Tullio, Solomon K. Musani, Alanna C. Morrison, Tune H. Pers, Michael Morley, Marcus E. Kleber, AortaGen Consortium, Jayashri Aragam, Emelia J. Benjamin, Joshua C. Bis, Egbert Bisping, Ulrich Broeckel, CHARGE-Heart Failure Consortium, Susan Cheng, Jaap W. Deckers, Fabiola Del Greco M, Frank Edelmann, Myriam Fornage, Lude Franke, Nele Friedrich, Tamara B. Harris, Edith Hofer, Albert Hofman, Jie Huang, Alun D. Hughes, Mika Kähönen, KNHI investigators, Jochen Kruppa, Karl J. Lackner, Lars Lannfelt, Rafael Laskowski, Lenore J. Launer, Margrét Leosdottir, Honghuang Lin, Cecilia M. Lindgren, Christina Loley, Calum A. MacRae, Deborah Mascalzoni, Jamil Mayet, Daniel Medenwald, Andrew P. Morris, Christian Müller, Martina Müller-Nurasyid, Stefania Nappo, Peter M. Nilsson, Sebastian Nuding, Teresa Nutile, Annette Peters, Arne Pfeufer, Diana Pietzner, Peter P. Pramstaller, Olli T. Raitakari, Kenneth M. Rice, Fernando Rivadeneira, Jerome I. Rotter, Saku T. Ruohonen, Ralph L. Sacco, Tandaw E. Samdarshi, Helena Schmidt, Andrew S.P. Sharp, Denis C. Shields, Rossella Sorice, Nona Sotoodehnia, Bruno H. Stricker, Praveen Surendran, Simon Thom, Anna M. Töglhofer, André G. Uitterlinden, Rolf Wachter, Henry Völzke, Andreas Ziegler, Thomas Münzel, Winfried März, Thomas P. Cappola, Joel N. Hirschhorn, Gary F. Mitchell, Nicholas L. Smith, Ervin R. Fox, Nicole D. Dueker, Vincent W.V. Jaddoe, Olle Melander, Martin Russ, Terho Lehtimäki, Marina Ciullo, Andrew A. Hicks, Lars Lind, Vilmundur Gudnason, Burkert Pieske, Anthony J. Barron, Robert Zweiker, Heribert Schunkert, Erik Ingelsson, Kiang Liu, Donna K. Arnett, Bruce M. Psaty, Stefan Blankenberg, Martin G. Larson, Stephan B. Felix, Oscar H. Franco, Tanja Zeller, Ramachandran S. Vasan, Marcus Dörr

×

Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency
Christina V. Theodoris, … , Helen M. Blau, Deepak Srivastava
Christina V. Theodoris, … , Helen M. Blau, Deepak Srivastava
Published March 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90338.
View: Text | PDF

Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency

  • Text
  • PDF
Abstract

Diseases caused by gene haploinsufficiency in humans commonly lack a phenotype in mice that are heterozygous for the orthologous factor, impeding the study of complex phenotypes and critically limiting the discovery of therapeutics. Laboratory mice have longer telomeres relative to humans, potentially protecting against age-related disease caused by haploinsufficiency. Here, we demonstrate that telomere shortening in NOTCH1-haploinsufficient mice is sufficient to elicit age-dependent cardiovascular disease involving premature calcification of the aortic valve, a phenotype that closely mimics human disease caused by NOTCH1 haploinsufficiency. Furthermore, progressive telomere shortening correlated with severity of disease, causing cardiac valve and septal disease in the neonate that was similar to the range of valve disease observed within human families. Genes that were dysregulated due to NOTCH1 haploinsufficiency in mice with shortened telomeres were concordant with proosteoblast and proinflammatory gene network alterations in human NOTCH1 heterozygous endothelial cells. These dysregulated genes were enriched for telomere-contacting promoters, suggesting a potential mechanism for telomere-dependent regulation of homeostatic gene expression. These findings reveal a critical role for telomere length in a mouse model of age-dependent human disease and provide an in vivo model in which to test therapeutic candidates targeting the progression of aortic valve disease.

Authors

Christina V. Theodoris, Foteini Mourkioti, Yu Huang, Sanjeev S. Ranade, Lei Liu, Helen M. Blau, Deepak Srivastava

×

Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction
Vimal Ramjee, … , Rajan Jain, Jonathan A. Epstein
Vimal Ramjee, … , Rajan Jain, Jonathan A. Epstein
Published February 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI88759.
View: Text | PDF

Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction

  • Text
  • PDF
Abstract

Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.

Authors

Vimal Ramjee, Deqiang Li, Lauren J. Manderfield, Feiyan Liu, Kurt A. Engleka, Haig Aghajanian, Christopher B. Rodell, Wen Lu, Vivienne Ho, Tao Wang, Li Li, Anamika Singh, Dasan M. Cibi, Jason A. Burdick, Manvendra K. Singh, Rajan Jain, Jonathan A. Epstein

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 36
  • 37
  • Next →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Author's TakeCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts