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Fat-specific protein of 27 kDa (FSP27) is a highly expressed adipocyte protein that promotes triglyceride accumulation
within lipid droplets. In this issue of the JCI, Nishino et al. show that FSP27 also helps to maintain the characteristically
large unilocular lipid droplet structure within each white adipocyte (see the related article beginning on page 2808).
Fragmentation of lipid droplets in white adipocytes from FSP27-KO mice caused both increased lipolysis and upregulation
of genes enhancing mitochondrial oxidative metabolism. This increased energy expenditure in turn protected the mice
from diet-induced obesity and insulin resistance. These new results highlight powerful mechanisms that tightly coordinate
rates of triglyceride storage in lipid droplets with mitochondrial fatty acid oxidation in white adipocytes.
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Fat-specific protein of 27 kDa (FSP27) is a highly expressed adipocyte pro-
tein that promotes triglyceride accumulation within lipid droplets. In this 
issue of the JCI, Nishino et al. show that FSP27 also helps to maintain the 
characteristically large unilocular lipid droplet structure within each white 
adipocyte (see the related article beginning on page 2808). Fragmentation 
of lipid droplets in white adipocytes from FSP27-KO mice caused both 
increased lipolysis and upregulation of genes enhancing mitochondrial 
oxidative metabolism. This increased energy expenditure in turn protect-
ed the mice from diet-induced obesity and insulin resistance. These new 
results highlight powerful mechanisms that tightly coordinate rates of tri-
glyceride storage in lipid droplets with mitochondrial fatty acid oxidation 
in white adipocytes.

The handling and disposal of large vol-
umes of greasy cooking ingredients like 
lard and vegetable oils is a messy business 
as any restaurant manager will lament. 
Human physiology faces the same daunt-
ing challenge for the efficient storage and 
metabolism of fats. To accomplish these 
feats, fat-storing cells, referred to as white 
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fat cells or adipocytes, are uniquely special-
ized to accommodate over 95% of their cell 
volume as a single lipid droplet (Figure 1). 
Triglyceride within this unilocular lipid 
droplet can, in reaction to other signals, 
be hydrolyzed to fatty acids and glycerol, 
which move through the circulation to 
muscle and other tissues for energy produc-
tion (fatty acids) and to liver for conversion 
to glucose (glycerol). Proteins are known to 
coat the surfaces of lipid droplets in adipo-
cytes. However, until now, what molecules 
are required to maintain the distinctive 
unilocular characteristic of lipid droplets 
in white adipocytes has remained a mys-
tery. In this issue of the JCI, Nishino et al. 

(1) provide compelling evidence that one 
such protein is fat-specific protein of 27 
kDa (FSP27; also known as Cidec), a highly 
and selectively expressed protein in human 
white adipocytes (2), recently found to 
colocalize with lipid droplets and regulate 
fat storage (3–5).

Lipid droplets: composition  
and structure
Lipid droplets within adipocytes are com-
posed of a core of triglycerides and choles-
teryl esters that are surrounded on their 
surfaces by a phospholipid monolayer 
associated with lipid droplet proteins (6). 
Perilipin was the first identified lipid drop-
let–specific protein that coats the surfaces 
of these structures in brown and white 
adipocytes and some steroidogenic cells 
(7). It is the prototypic member of a fam-
ily of related proteins containing a “PAT” 
domain, so called for the members perilipin, 
adipophilin (also known as adipose differen-
tiation–related protein), and the tail-inter-
acting protein of 47 kDa (TIP47), but also 
includes the plasma membrane–associated 
protein S3-12 and myocardial lipid droplet 
protein/oxidative tissues–enriched PAT pro-
tein (MLDP/OXPAT) (6, 8). This domain, in 
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combination with others, functions to target 
these proteins to lipid droplets and to medi-
ate regulation of triglyceride storage and 
release from the droplets. Within the past 
year, additional proteins were discovered to 
be colocalized with cellular lipid droplets, 
including FSP27 (3, 4), Cidea (9), and fat-
inducing transcript 1 (FIT1) and FIT2, endo-
plasmic reticulum–resident membrane pro-
teins that induce lipid droplet accumulation 
in cell culture and when expressed in mouse 
liver (10). FSP27 and Cidea are members of 
the cell death–inducing DNA fragmenta-
tion factor 45–like effector (CIDE) protein 
family, members of which share a conserved 
N-terminal CIDE-N domain and a COOH-
terminal CIDE-C domain (3, 5). When 
expressed in preadipocytes or even African 
green monkey kidney cells (COS cells), these 
proteins enhance the deposition of triglycer-
ide and the size of lipid droplets (3, 5). Three 
isoforms of the CIDE proteins have been 
reported in mice (Cidea, Cideb, and FSP27) 
and humans (CIDEA, CIDEB, and CIDEC). 
Human CIDEC is the homolog of mouse 
FSP27. Interestingly, like FSP27 and Cidea, 
Cideb might also be a hepatic lipid droplet 
regulator, since its ablation in mice causes 
decreased fat accumulation in liver (11).

How might FSP27 mediate unilocular 
disposition of the lipid droplet in primary 
white adipocytes? This function of FSP27 is 
not apparently shared by perilipin, because 
in their current study, Nishino et al. (1) 
show that white adipocytes from FSP27-
KO mice are multilocular, while those 
from perilipin-KO mice remain unilocular 
(12, 13). Little is known about the mecha-
nisms that control the sizes of lipid drop-
lets in adipocytes or in other cells that can 
accumulate small lipid droplets. However, 
proteins involved in cell membrane fusion 
processes, such as N-ethylmaleimide–sen-
sitive factor (NSF), soluble NSF attach-
ment protein (α-SNAP), and such SNAP 
receptors (SNAREs) as synaptosomal-asso-
ciated protein of 23 kDa (SNAP23), syn-
taxin-5, and vesicle-associated membrane 
protein 4 (VAMP4), were recently discov-
ered to be associated with lipid droplets 
and may mediate lipid droplet fusion (14). 
Thus, as depicted in Figure 1, perhaps 
the biogenesis of small lipid droplets in 
the endoplasmic reticulum is followed by 
their subsequent fusion in the cytoplasm 
of adipocytes. Continued enlargement of 
lipid droplets by direct incorporation of 
additional triglycerides might also occur. 

In this regard, some lipid droplet proteins 
are constitutively available in the cyto-
plasm to bind lipid droplets (e.g., TIP47, 
S3-12, MLDP/OXPAT), while others are 
exclusively present on lipid droplets and 
absent as free proteins in the cytoplasm 
(e.g., perilipin, Cidea, and FSP27). As the 
model in Figure 1 hypothesizes, perhaps 
FSP27 catalyzes fusions of smaller lipid 
droplets onto the larger one, although this 
concept remains to be rigorously tested. 
Interestingly, Nishino et al. show that the 
presence of multilocular lipid droplets in 
brown adipocytes correlates with virtually 
undetectable levels of FSP27 protein in 
these cells. In contrast, perilipin is abun-
dant in brown adipocytes.

Perilipin and FSP27 in control  
of lipolysis and fat storage
Another important distinction between 
the functions of perilipin and FSP27 
revealed by the current study by Nishino 
et al. (1), relates to their modes of regula-
tion of lipolysis. Perilipin is required for 
optimal glycerol and fatty acid release into 
the serum in response to injection of cat-
echolamines into mice (12), while FSP27 
ablation has no effect on this response (1). 
Thus, perilipin is thought to be part of the 
mechanism whereby lipolysis is stimulated 
through enhancement of the actions of 
adipose triglyceride lipase (ATGL) (6) and 
hormone-sensitive lipase (6, 8, 15), while 
FSP27 does not seem to function directly 
in these mechanisms. However, in cultured 
adipocytes, siRNA-mediated knockdown 
of either FSP27 or perilipin enhances basal 
lipolysis, without attenuating lipolysis in 
response to catecholamines (1, 3). This dif-
ference between cultured versus primary 
adipocytes with respect to the mode by 
which perilipin participates in catechol-
amine action is not understood and con-
trasts with the similarity of effects of FSP27 
in vivo and in vitro. In any case, FSP27 
depletion by either gene ablation in mice 
(1) or by siRNA-mediated gene silencing 
in cultured adipocytes (3) causes marked 
fragmentation of lipid droplets, which 
may stimulate lipolysis through enhanced 
lipase action on the larger surface area per 
unit volume of triglyceride. Importantly, 
Nishino et al. show that cells depleted of 
both perilipin and FSP27 yielded no fur-
ther lipid droplet fragmentation than cells 
depleted of FSP27 alone, yet lipolysis was 
increased further in the case of the former 
(1). Taken together, these findings sup-
port the idea that different mechanisms of 

Figure 1
FSP27 is required for the unilocular structure of lipid droplets in white adipocytes. According to 
this model, the biogenesis of small lipid droplets in the endoplasmic reticulum is followed by their 
subsequent fusion in the cytoplasm of white adipocytes. Proteins thought to be involved in cell 
membrane fusion processes (e.g., N-ethylmaleimide–sensitive factor [NSF], soluble NSF attach-
ment protein [a-SNAP], and SNAP receptors [SNAREs]) might activate these fusion processes. 
Lipid droplet proteins (dark blue) such as perilipin, tail-interacting protein of 47 kDa, S3-12, adi-
pose differentiation–related protein, and others may be involved in packaging the lipids in mul-
tilocular lipid droplets in adipocytes. According to Nishino et al. (1), in their current study in this 
issue of the JCI, FSP27 plays a key role in the formation of unilocular lipid droplets in adipocytes 
of WAT, since lipid droplets are shown to be multilocular in FSP27-KO mice.
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action characterize perilipin versus FSP27, 
with respect to regulation of lipolysis in 
primary white adipocytes.

Lipid droplets and whole-body 
glucose homeostasis
The results obtained using the FSP27-KO 
mice generated by Nishino et al. (1) reveal 
a fascinating and instructive paradox when 
compared with effects of perilipin loss on 
whole-body metabolism. In both perilipin-
KO and FSP27-KO animals, the amount 
of white adipose tissue (WAT) is markedly 
reduced (1, 12, 13). Similarly, both FSP27- 
and perilipin-KO mice show increased 
oxygen consumption and energy expen-
diture compared with wild-type mice, in 
concert with increased availability of fatty 
acid substrate emanating from unshielded 
lipid droplets. Yet, despite these similari-
ties, Nishino et al. show FSP27-KO mice 
remain consistently insulin-sensitive, even 

on a high-fat diet, while perilipin-KO mice 
become insulin resistant (13, 16). Moreover, 
skeletal muscle and liver exhibit increased 
fatty acid oxidation in perilipin-KO mice 
but not in FSP27-KO mice. How can we 
account for such differences in phenotype?

As Nishino et al. (1) point out, this para-
dox may be explained by how white adipo-
cytes respond to different modes of lipo
lytic stimulation. In the case of lipid droplet 
fragmentation by FSP27 depletion, the size 
and number of mitochondria in white adi-
pocytes are increased and genes related to 
mitochondrial fatty acid transport and 
oxidation are upregulated. Even the expres-
sion of transcription factors such as nuclear 
respiratory factor 1 (NRF1) and mitochon-
drial transcription factor A (mtTFA), known 
to bolster mitochondrial biogenesis, are 
enhanced in WAT of the FSP27-KO mice. 
While such changes also follow perilipin-KO 
to some degree, the unilocular lipid droplet 

remains. Importantly, mitochondria local-
ize around lipid droplets (17), which makes 
fatty acid substrates highly accessible. Thus, 
the increased surface area on the many small 
lipid droplets in FSP27-KO adipocytes likely  
enhances mitochondrial access to fatty 
acid substrates. Together, these effects may 
greatly increase fatty acid oxidation within 
WAT in the FSP27-depleted animal and 
attenuate the release of fatty acids to mus-
cle and liver where they can cause insulin 
resistance. Increased release of fatty acids in 
the perilipin-KO mice may cause increased 
fatty acids to enter skeletal muscle and liver. 
Fatty acid oxidation is indeed enhanced in 
these tissues in the perilipin-KO mouse 
but not in the FSP27-KO animals. Thus, 
the unique lipid droplet fragmentation in 
WAT of the FSP27-KO mouse may uniquely 
elevate the fatty acid oxidation capacity of 
the WAT itself. This leads to a stunning, 
positive influence on whole-body glucose 
homeostasis. This concept is consistent 
with previous results in which the uncou-
pling protein UCP1 was expressed in WAT 
to increase its fatty acid oxidizing capacity, 
which enhanced whole-body glucose toler-
ance (18). Interestingly, part of this effect 
may be mediated through neuronal circuits 
between WAT and the brain (18).

Mechanisms linking lipid droplets  
to mitochondrial energetics
How might lipid droplet fragmentation 
and increased levels of intracellular fatty 
acids due to FSP27 ablation augment mito-
chondrial biogenesis and their capacity for 
fatty acid oxidation? Two candidates pres-
ent themselves as likely intermediaries of 
these effects of increased intracellular fatty 
acids on mitochondrial function (Figure 2).  
The first includes nuclear receptors such 
as the PPAR protein family, known to be 
responsive to fatty acids and their deriva-
tives. PPARγ powerfully promotes adi-
pogenesis, a process also associated with 
increased mitochondrial biogenesis (17). 
PPARγ agonists such as the thiazolidin-
ediones further augment expression of 
genes related to fatty acid oxidation and 
oxidative phosphorylation in mature, fully 
differentiated adipocytes in culture (17). It 
is also well established that PPARγ isoforms 
PPARα and PPARδ expressed in WAT 
strongly promote expression of genes in 
mitochondrial oxidative pathways (19–21).  
These latter transcription factors are most 
highly expressed in skeletal muscle (PPARδ) 
and liver (PPARα) and could be important 
intermediaries of the increased fatty acid 

Figure 2
FFA–induced gene expression and oxidative metabolism in FSP27-KO mice. The lipid droplet 
proteins FSP27, Cidea, and perilipin are regulated by PPARγ and play a role in lipid droplet 
biogenesis and dynamics. These lipid droplet proteins inhibit lipolysis (red inhibitory symbol). 
Thus, depletion of these lipid droplet proteins enhances adipocyte lipolysis, releasing glycerol 
and FFAs. According to this model, FFAs released during lipolysis induced by depletion of 
FSP27, Cidea, or perilipin may act as ligands for PPARs that further regulate the transcrip-
tional coactivator PGC-1α as well as genes that encode proteins that promote mitochondrial 
biogenesis and fatty acid oxidation. Similarly, FFAs released during lipolysis have been shown 
to activate AMPK, which functions to stimulate fatty acid oxidation, by increasing fatty acid 
transport into mitochondria and perhaps by regulating the transcription of genes that encode 
proteins that promote fatty acid oxidation. Thus, the increased mitochondrial oxidation of fatty 
acids in white adipocytes of FSP27-KO mice may result in part from activation of AMPK. In 
addition, fragmentation of lipid droplets in FSP27-KO mice may enhance access of mitochon-
dria to the resulting increased surface area of lipid droplets, further augmenting fatty acid 
oxidation (data not shown, see text for details). COXI, subunit I of cytochrome c oxidase; 
CPT-1, carnitine palmitoyltransferase-1; LCAD, long-chain acyl–coenzyme A dehydrogenase; 
MCAD, medium-chain acyl–coenzyme A dehydrogenase; PGC-1α, PPARγ-coactivator 1α; 
TG, triglyceride; VLCAD, very LCAD.
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oxidation observed in these tissues in the 
perilipin-KO mouse. A key experiment 
to test whether PPAR isoforms contrib-
ute to increased mitochondrial function 
in response to FSP27 depletion would be 
to perform double knockdowns in fully 
mature adipocytes.

A second potential intermediate between 
FSP27 and mitochondrial oxidative metab-
olism could be the protein kinase AMPK 
(Figure 2), which is a key regulator of fatty 
acid oxidation in response to increased 
intracellular AMP levels (reviewed in ref. 22). 
The AMP/ATP ratio in isolated adipocytes is 
indeed increased under lipolytic conditions, 
and this is attenuated when fatty acid lev-
els are reduced (23). Elevated intracellular 
free fatty acids in adipocytes might increase 
AMP/ATP ratios through uncoupling 
effects in mitochondria or by enhancing 
ATP utilization for fatty acid acylation by 
coenzyme A (23). Previous studies implicate 
AMPK in mediating increased transcription 
of adipocyte genes in the fatty acid oxida-
tion pathway (24), although further work 
is required to substantiate this mode of 
regulation and unravel the targets of AMPK 
signaling in this pathway. Nonetheless, the 
idea that AMPK acts in conjunction with 
the lipid droplet protein FSP27 to fine-
tune the relationship between fatty acid 
esterification versus fatty acid oxidation 
in mitochondria is a worthy hypothesis for 
vigorous investigation (Figure 2). Similarly, 
PPARγ may act to promote mitochondrial 
fatty acid oxidation along with fatty acid 
acylation and esterification because the lat-
ter processes require the ATP generated by 
the former process.

A role for FSP27 in human obesity?
In normal humans, expression of perilipin 
and FSP27 mRNA appears to be over 100 
times higher in adipose tissue than in doz-
ens of other tissues studied (25). Cidea is 
also present in human adipose tissues, 
and its expression inversely correlates with 
insulin resistance in obese human sub-
jects (9, 26). Moreover, a polymorphism 
in Cidea correlates with the incidence of 
obesity in humans (27, 28). Very recently, 
we reported that omental adipose tissue 
samples derived from obese human sub-
jects with similar BMI values exhibited 
levels of perilipin, FSP27, and CIDEA mRNA 
that also inversely correlate with the extent 
of insulin resistance (9). However, the 
lipid droplets in adipocytes from all sub-
jects remained unilocular, consistent with 
the fact that substantial levels of FSP27 

remained. Thus, increased WAT fatty acid 
oxidation may not be greatly stimulated 
under these conditions. Taken together, 
these results converge with the generally 
held idea that insulin resistance is medi-
ated in part by the inability of adipocytes 
to sequester triglyceride away from muscle 
and liver. It is plausible that deficiencies in 
lipid droplet proteins that promote lipid 
storage, including FSP27, compromise 
WAT fat sequestration and contribute to 
increased circulating fatty acids that pro-
mote insulin resistance in skeletal muscle 
and liver. Nishino et al. (1) have provided 
insightful data that may be important in 
further testing such hypotheses.
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